Belmont MATHS: Number and Algebra Framework

Number \& Algebra

Stage 1 - I can pay attention to, and watch counting activities.
- I can follow a counting sequence indicated by an adult.
- I can give you objects.
- I can match object to object
- I can add more to a group of objects/pictures.
- I can point to each object as we count them, with support.
- I can indicate 'gone' or 'all gone' (through speech, signs, gesture).
- I can show less by taking away objects/pictures
- I can separate a small group of objects in different ways but recognise the total stays the same
- I can say that if we add more the amount gets bigger and if we show less the amount gets smaller (objects and pictorially)
- I can sort objects into groups with adult support
Stage 2 - I can identify and represent 1 physically and pictorially
- I can identify the numeral for 1 and match it to the corresponding amount
- I can identify and represent 2 physically and pictorially
- I can identify the numeral for 2 and match it to the corresponding amount
- I can identify and represent 3 physically and pictorially
- I can identify the numeral for 3 and match it to the corresponding amount
- I can point to each object as we count them.
- I can order and compare the amounts and numerals 1,2 and 3
- I can use the last number in a count to represent the number of objects in a set.
- I can understand the compositions of 1,2 and 3
- I can identify and represent 4 and 5 physically and pictorially
- I can show 5 fingers with assistance
- I can identify the numerals for 4 and 5 and match it to the corresponding amount
- I can show my understanding of the composition of 4 and 5
- I can count forward to 5 and back from 5
- I can show 1 more and 1 less physically and pictorially to 5 and say how many now

| | - I can recognise and understand the concept of a whole |
| :--- | :--- | :--- |
| Stage 3 | - I can put together parts to make a whole |
| | - I can identify and represent zero physically and pictorially and using the numeral |
| | - I can identify and represent $6-10$ physically and pictorially |
| | - I can identify the numerals for $6-10$ and match it to the corresponding amount |
| | - I can show my understanding of the composition of numbers $6-10$ |

Stage 5 - I can build numbers beyond ten (I have 1 ten and 3 ones) and name the number with adult support

- I can identify and represent 0-20 physically and pictorially
- I can identify the numerals to 20 and match it to the corresponding amount
- I can show my understanding of the composition of numbers to 20
- I can write my numerals to 20 with minimal support
- I can order my numerals to 20
- I can show/say how many tens and ones are in my numbers to 20 (objects and pictorially)
- I can find 1 more and 1 less to 20 using objects, images and abstract resources (number lines)
- I can compare numbers to 20 using comparative language and symbols (objects, images, numerals)
- I can order 3 groups of objects/images/ 3 numerals from greatest to smallest to 20
- I can recognise and understand the addition symbol
- I can recognise and understand the equals symbol
- I can create number sentences from a part part whole model
- I can create addition number sentences from first, then and now stories and bar models
- I can recognise the equivalence of $1 / 2$ and $2 / 4$
- I can use objects and pictures to find 3 quarters
- I can match and identify the mathematical symbols to the physical and pictorial amounts of $1 / 2,1 / 4,2 / 4,3 / 4$

Stage 6 - I can build numbers beyond 20 to 50 (I have 3 tens and 3 ones) and name the number with adult support

- I can build a given number to 50 using objects and say how many tens and ones my number contains
- I can count 0-50 forwards and backwards starting with any number
- I can write my numerals 0-50
- I can understand different visual representations of 1's and 10 's and say which number is being shown to 50
- I can match/show multiple representation of number to 50 (written, numeral, images, tens and ones)
- I can find 1 more and 1 less to 50 using objects, images and abstract resources (number lines)
- I can compare numbers to 50 using comparative language and symbols (objects, images, numerals)
- I can order 3 groups of objects/images/ 3 numerals from greatest to smallest to 50
- I can count in 2's using objects/images/abstract resources (number lines/ number grid)
- I can identify and sort odd and even numbers
- I can recognise that the order of addition sentences can change but the information stays the same
- I can understand and show my number bonds to 5 using objects/images/numerals
- I can understand and show my number bonds to 10 using objects/images/numerals
- I can compare number sentences using comparative language and symbols
- I can add together using a part part whole model using object/images and record my findings in a number sentence
- I can add using the counting on method (object, pictures, numerals) and record my findings in a number sentence
- I can find a missing part in our part part whole model (objects, pictorial, numerals)
- I can recognise and understand the subtract symbol
- I can take away using first then and now stories and record my findings in a stem sentence and a number sentence
- I can solve and record subtraction questions to 10 using objects and pictures (taking away)
- I can solve and record subtraction questions to 10 using partitioning (objects, images)
- I can make addition and subtraction fact family number sentences- inverse operations to 10 (e.g. $3+5=8 \quad 8-5=3 \quad 5+3=8$ ect)
- I can count back to solve subtraction sums
- I can find the difference between 2 amounts (objects, pictorial, numerals)
- I can say or sign that third is when something is split into 3 equal/same parts and that 3 thirds make a whole
- I can explain how I know I have made a third pictorially regardless the orientation
- I can show thirds using objects and pictures
- I can count in 5's and 10's using objects/images/abstract resources (number lines/number grids)
- I can build numbers beyond 50 to 100 (I have 3 tens and 3 ones) and name the number with adult support
- I can build a given number to 100 using objects and say how many tens and ones my number contains
- I can count 0-100 forwards and backwards starting with any number
- I can write my numerals 0-100
- I can understand different visual representations of 1's and 10's and say which number is being shown to 100
- I can match/show multiple representation of number to 100 (numeral, images, tens and ones)
- I can show/ recognise numbers to 100 using a place value chart
- I can find 1 more and 1 less to 100 using objects, images and abstract resources (number lines)
- I can partition a given number to 100 into tens and ones (objects, images, numerals)
- I can make comparisons of addition and subtraction sentences using comparative language and symbols
- I can add by counting on and record my findings
- I can understand and show my number bonds to 20 using objects/images/numerals
- I can add by using my number bonds (e.g. add by making 10 and then add the remainder)
- I can solve subtraction questions to 20 (object, picture, numerals)
- I can make addition and subtraction fact family number sentences- inverse operations to 20 (e.g. $3+15=18 \quad 18-15=3 \quad 15+3=18$ ect)
- I can make and add together equal groups using object, pictures and abstract resources
- I can make arrays using objects and pictures and record my findings in a number sentence
- I can double using object/pictures/ abstract resources (number lines)
- I can show multiple ways of making equal groups from a total (objects/ pictorially)
- I can recognise and find $2 / 3$'s
- I can name the different parts of a fraction: denominator numerator

Stage 8 - I can read/write (in my own phonetic form) number words to 100

- I can match numerals, written number, and visual representations of number to 100
- I can partition numbers to 100 in different ways (not just tens and ones) with objects and pictorial
- I can represent my partitions to 100 on a part part whole model within a number sentence e.g. $63=31+32$
- I can count in 10 's using a number line from different start points
- I can compare number sentences to 20 using comparative language and symbols
- I can recognise and make bonds to 100 using my knowledge of tens and ones
- I can add and subtract amounts of 10 's to numbers up to 100
- I can add/subtract a 1 digit number to a 2 digit number (number line)
- I can use the column addition method to add a 1 digit number to a 2 digit number
- I can share equally and record my findings
- I can count in $1 / 2 \mathrm{~s}$ to a given number
- I can count in $1 / 4 \mathrm{~s}$ to a given number
- I can count in thirds to a given number

Stage 9 - I can estimate numbers on a number line to 100

- I can compare amounts to 100 (objects, images and numerals) using comparative language and symbols
- I can order 3 groups of objects/images/ 3 numerals from greatest to smallest to 100
- I can extend my counting in 2 's, 5's and 10 's to 100
- I can use the column subtraction method to take away a 1 digit number from a 2 digit number
- I can recognise and use fractions as numbers: Unit and non-unit fractions
- I can recognise that tenths arise from dividing an object into 10 equal parts.
- I can recognise and use fractions as numbers

Stage

10

- I can count in 3's using objects/images/abstract resources (number lines/ number grid)
- I can count In multiples of 100 using objects, images and numerals
- I can represent numbers to 1000 using objects, pictures and numerals
- I can use zero as a place holder in a two digit number when using tens and units (ones).
- I can add 2 digit numbers using the column method (with and without exchange)
- I can subtract 2 digit numbers using the column method (with and without exchange)
- I can form number bonds to 100 using tens and ones
- I can add 3 one-digit numbers
- I can add equal groups to find a total (2^{\prime} 's, 5 's 10^{\prime} 's 3^{\prime} s)
- I can recognise and understand the multiplication symbol
- I can use pictorial information to from a multiplication question (e.g. picture of 3 plates with 3 cupcakes 3 lots of 3 3x3=9)
- I can use arrays to form and solve multiplication questions (2's, 5's 10^{\prime} s 3 's)
- I can recognise, find and write a fraction of an amount

Stage

- I can partition numbers to 1000 Objects, images (place value charts) and using numerals (stem and number sentences)

11

- I can show flexible partitioning to 1000 using object and pictures (finding multiple ways to partition the same numeral)
- I can represent numbers to 1000 using place value counters
- I can find 1,10 or 100 more or less than a number to 1000 using objects and images
- I can identify the increments on a number line to 1000 and work out the value of a given point
- I can use a number line to fine 1,10 ad 100 more or less than a given number
- I can estimate using a number line to 1000
- I can compare amounts of objects, images and numerals to 1000 using comparative language and symbols
- I can order sets of numbers to 1000
- I can use my knowledge of number bonds within 10 to add and subtract multiples of 100 up to 1000
- I can add and subtract a 1 digit number from a 3 digit number
- I can add and subtract a multiple of 10 to/from a 3 digit number
- I can add/ subtract a 2 digit number from a 3 digit number
- I can solve addition/ subtraction calculations with a missing number e.g. $4+$? $=200$ with 1,2 and 3 digit numbers.
- I can solve addition and subtraction calculations with a missing number when operations are mixed.
- I can show that I know my 2 times tables
- I can show that I know my 5 times tables
- I can show that I know my 10 times tables
- I can show that I know my 3 times tables
- I can recognise and understand the division symbol
- I can use pictorial information to from a division question (e.g. we have 15 cakes we want to share them into 3 boxes 3 groups of $515 \div 3=5$)
- I can solve simple division questions using objects, pictures and abstract resources (\div by 2's $^{\prime}$'s 5 's and 10^{\prime} s)

| | - I can divide by $2,3,5$ and 10 using my understanding of multiplication |
| :--- | :--- | :--- |
| - I can explore equivalent fractions in pairs and can start to spot patterns | |
| - | - I can compare unit fractions or fractions with the same denominator |

- I can use the column multiplication method to solve a 2 digit by 1 digit sum (with exchange)
- I can divide 2 digit numbers by 1 digit numbers (without exchange)
- I can divide 2 digit numbers by 1 digit numbers (with exchange)
- I can divide 2 digit numbers by 1 digit numbers (with exchange and remainders)
- I can recognise equivalent fractions in diagrams, number lines and bar models.
- I can understand and count in fractions represented on a number line
- I can partition a whole to find a missing fraction e.g. $3 / 7+\ldots / 7=1$

Stage

- I can multiply/divide a 4 or 5 digit numbers by a single digit.
- I can do simple calculations using negative numbers.
- I can complete balancing equations with all four operations.
- I can understand tenths as a decimal
- I can divide a 1 digit number by 10 (decimals)
- I can divide a 2 digit number by 10 (decimals)
- I can understand 100 ths as a decimal
- I can divide a 1 or 2 digit number by 100 (decimals)
- I can make a whole with tenths and hundredths (decimals and factions)
- I can partition decimals (using place value)
- I can flexibly partition decimals
- I can compare and order decimals with mixtures of 1.d.p, 2.d.p. and 3.d.p.
- I can round to the nearest whole number when given a decimal
- I can understand halves and quarters as decimals
- I can read and plot coordinates in the two upper quadrants.
- I can use brackets in simple calculations.
- I can find equivalent fractions.
- I can reduce a fraction to its simplest form.
- I can convert fractions, decimals, percentages and place them in order.
- I can order fractions with different denominators.
- I can understand simple ratio and can solve problems involving direct proportion by scaling up/down.
- I have a sound understanding of the number system including fractions, decimals and percentages.
- I can reduce a ratio to simplest form and use it in problem solving by multiplying.
- I can expand brackets.

